Surgical Site Infection due to MRSA: Facts, Fiction, and Frustrations

Deverick J. Anderson, MD, MPH
Asst. Professor of Medicine, DUMC
Co-Director, Duke Infection Control Outreach Network (DICON)
Outline

- SSIs - The Basics
- **MRSA** - The Facts
 - Epidemiology
 - Risk Factors
 - Outcomes
- Prevention of SSIs
- **MRSA** - Fiction and Frustrations
- Take Home Points
SSI Classification

- Skin
- Subcutaneous Tissue
- Deep Soft Tissue (fascia & muscle)
- Organ/Space

- Superficial Incisional SSI
- Deep Incisional SSI
- Organ/Space SSI
Risk Factors

- Microbial Characteristics
- Surgical Characteristics
- Patient Characteristics

Risk of SSI
Risk Factors

- **Patient Related**
 - Age
 - Diabetes
 - Obesity
 - Smoking
 - Immunosuppression

- **Organism**
 - Colonization
 - Virulence
 - Drug-Resistance

- **Peri-operative**
 - Hair removal
 - Pre-op infections
 - Surgical scrub
 - Skin prep
 - Antimicrobial prophylaxis
 - Agent
 - Timing
 - Surgical skill
 - Operative time
 - OR traffic
Outcomes

- Prolonged duration of hospitalization
 - 7-10 additional days

- Increased costs
 - Depends on type of procedure/SSI
 - Range: $3,000-$29,000
 - Up to $10 billion each year for US healthcare

- Kills patients
 - 2-11-fold higher risk of death than uninfected surgical patients
 - 77% of deaths among surgical patients with SSI

SSI due to MRSA - FACTS
SSI due to MRSA is Common...

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>No. (%) of pathogenic isolates</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoNS</td>
<td>965 (13.7)</td>
<td>2</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>2,108 (30.0)</td>
<td>1</td>
</tr>
<tr>
<td>Enterococcus species</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>E. faecalis</td>
<td>194 (2.8)</td>
<td></td>
</tr>
<tr>
<td>E. faecium</td>
<td>345 (4.9)</td>
<td></td>
</tr>
<tr>
<td>NOS</td>
<td>249 (3.5)</td>
<td></td>
</tr>
<tr>
<td>Candida species</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>C. albicans</td>
<td>115 (1.6)</td>
<td></td>
</tr>
<tr>
<td>Other Candida spp. or NOS</td>
<td>30 (0.4)</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>671 (9.6)</td>
<td>4</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>390 (5.6)</td>
<td>5</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>213 (3.0)</td>
<td>7</td>
</tr>
<tr>
<td>Enterobacter species</td>
<td>293 (4.2)</td>
<td>6</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>42 (0.6)</td>
<td>9</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>47 (0.7)</td>
<td>9</td>
</tr>
<tr>
<td>Other</td>
<td>1,363 (19.4)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7,025 (100)</td>
<td></td>
</tr>
</tbody>
</table>

49.2% were MRSA

...In ALL Locations

Anderson et al. ICHE 2007; 28:1047-53
Specific Risk Factors - MRSA SSI

• **Case-control study (n=77 patients)**
 - Post-operative risk factors included discharge to LTCF and post-operative antibiotics > 1 d
• **Cohort study (n=35)**
 - Multiple operations, cancer, wound drains
• **Study of MRSA mediastinitis (n=64)**
 - Diabetes, age > 70

Specific Risk Factors - MRSA SSI

Table 3. Independent Predictors of Surgical Site Infection Due to Methicillin-Resistant *Staphylococcus aureus*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Adjusted OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Need for assistance with</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥3 ADLs</td>
<td>3.97 (2.18–7.25)</td>
<td><.001</td>
</tr>
<tr>
<td>Medicaid insurance</td>
<td>3.31 (1.14–9.58)</td>
<td>.03</td>
</tr>
<tr>
<td>Wound classification of >2</td>
<td>2.91 (1.07–7.87)</td>
<td>.04</td>
</tr>
<tr>
<td>Duration of surgery >75th percentile<sup>a</sup></td>
<td>1.98 (1.11–3.55)</td>
<td>.02</td>
</tr>
<tr>
<td>Obesity</td>
<td>1.86 (1.14–3.02)</td>
<td>.01</td>
</tr>
</tbody>
</table>

150 MRSA SSI, 231 uninfected, 128 MSSA SSI

Table 4. Independent Predictors of Surgical Site Infection (SSI) Due to Methicillin-Resistant *Staphylococcus aureus*, Compared with SSI Due to Methicillin-Susceptible *S. aureus*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Adjusted OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Need for assistance with</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥3 ADLs</td>
<td>3.88 (1.91–7.87)</td>
<td><.001</td>
</tr>
<tr>
<td>Duration of surgery >75th percentilea</td>
<td>2.33 (1.17–4.62)</td>
<td>.02</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>2.22 (1.17–4.22)</td>
<td>.01</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>0.52 (0.27–0.99)</td>
<td>.05</td>
</tr>
</tbody>
</table>

150 MRSA SSI, 231 uninfected, 128 MSSA SSI

Outcomes due to MRSA SSI

• 3 studies compared MRSA v. MSSA SSI
 - #1 - 15 MRSA v. 26 MSSA mediastinitis
 • Mortality increased 4.6-fold
 - #2 - 73 MRSA v. 145 MSSA mediastinitis
 • Increased LOS and ventilation
 • NOT independent risk factor for mortality
 - #3 - 127 MRSA v. 173 MSSA - all procedures
 • 3-fold higher mortality
 • 3 additional days of hospitalization
 • Additional $14,000 in charges

Outcomes due to MRSA SSI

150 patients with MRSA SSI vs. 231 uninfected controls

<table>
<thead>
<tr>
<th>Independent Predictor</th>
<th>Odds Ratio [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Readmission within 90 days of surgical procedurea</td>
<td></td>
</tr>
<tr>
<td>SSI due to MRSA</td>
<td>35.0 [17.3–70.7]</td>
</tr>
<tr>
<td>Need assistance with ≥3 ADLs</td>
<td>4.28 [1.52–12.0]</td>
</tr>
<tr>
<td>Death within 90 days of surgical procedureb</td>
<td></td>
</tr>
<tr>
<td>SSI due to MRSA</td>
<td>7.27 [2.83–18.7]</td>
</tr>
<tr>
<td>Need assistance with ≥3 ADLs</td>
<td>6.73 [2.80–16.2]</td>
</tr>
<tr>
<td>Age ≥65</td>
<td>4.45 [1.41–14.0]</td>
</tr>
<tr>
<td>Orthopedic procedure</td>
<td>0.27 [0.10–0.71]</td>
</tr>
</tbody>
</table>

Anderson et al. PLOS One; 4: e8305.
Outcomes due to **MRSA SSI**

<table>
<thead>
<tr>
<th></th>
<th>Length of Stay Least Squares Mean (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unadjusted</td>
</tr>
<tr>
<td>Cases</td>
<td>23.6 (21.7–25.5)</td>
</tr>
<tr>
<td>Controls</td>
<td>5.2 (3.7–6.7)</td>
</tr>
<tr>
<td>Attributable difference</td>
<td>18.4 (16.0–20.8)</td>
</tr>
</tbody>
</table>

150 patients with MRSA SSI vs. 231 uninfected controls

Anderson et al. PLOS One; 4: e8305.
Outcomes due to MRSA SSI

150 patients with MRSA SSI vs. 231 uninfected controls

	Unadjusted	Adjusted
Charges Least Squares Mean (IQR)		
Unadjusted	Adjusted	
105,214 (91,458–118,971)	112,144 (85,850–138,438)	
47,099 (35,485–58,714)	50,463 (34,551–66,375)	
58,115 (40,111–76,119)	61,681 (23,352–100,011)	

Anderson et al. PLOS One; 4: e8305.
Outcomes due to MRSA SSI
Outcomes due to MRSA SSI

<table>
<thead>
<tr>
<th>Independent Predictor</th>
<th>Odds Ratio [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Readmission within 90 days of surgical procedure (^a)</td>
<td>0.43 [0.21–0.89]</td>
</tr>
<tr>
<td>Methicillin-resistance</td>
<td>0.43 [0.21–0.89]</td>
</tr>
<tr>
<td>Underwent coronary artery bypass grafting</td>
<td>4.35 [1.31–14.5]</td>
</tr>
<tr>
<td>Procedure performed at tertiary care facility</td>
<td>2.19 [1.03–4.63]</td>
</tr>
<tr>
<td>Admission to ICU prior to infection</td>
<td>0.20 [0.05–0.72]</td>
</tr>
<tr>
<td>Death within 90 days of surgical procedure (^b)</td>
<td>1.72 [0.70–4.20]</td>
</tr>
<tr>
<td>Methicillin-resistance</td>
<td>1.72 [0.70–4.20]</td>
</tr>
<tr>
<td>Need assistance with (\geq) 3 ADLs</td>
<td>3.79 [1.33–10.8]</td>
</tr>
<tr>
<td>Antimicrobial prophylaxis administered appropriately</td>
<td>0.35 [0.14–0.88]</td>
</tr>
</tbody>
</table>

150 patients with MRSA SSI vs. 128 MSSA

Anderson et al. PLOS One; 4: e8305.
Outcomes due to MRSA SSI

150 patients with MRSA SSI vs. 128 MSSA

<table>
<thead>
<tr>
<th></th>
<th>Length of Stay Least Squares Mean (IQR)</th>
<th>Adjusted (^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unadjusted</td>
<td>Adjusted</td>
</tr>
<tr>
<td>SSI due to MRSA</td>
<td>24.3 (21.7–26.8)</td>
<td>23.7 (21.3–26.0)</td>
</tr>
<tr>
<td>SSI due to MSSA</td>
<td>17.4 (14.6–20.2)</td>
<td>18.1 (15.5–20.7)</td>
</tr>
<tr>
<td>Attributable difference</td>
<td>6.86 (3.07–10.4)</td>
<td>5.5 (1.97–9.11)</td>
</tr>
</tbody>
</table>

Anderson et al. PLOS One; 4: e8305.
Outcomes due to MRSA SSI

Charges Least Squares Mean (IQR)	Unadjusted	Adjusted
105,214 (89,558–120,871)	99,466 (86,352–112,580)	
68,835 (52,164–85,506)	75,353 (61,351–89,355)	
36,379 (13,509–59,250)	24,113 (4,521–43,704)	

150 patients with MRSA SSI vs. 128 MSSA

Anderson et al. PLOS One; 4: e8305.
Prevention of MRSA SSI - The Basics

Spoiler Alert: There are NO specific recommendations for prevention of MRSA SSI in published guidelines!!
Strategies to Prevent Surgical Site Infections in Acute Care Hospitals

Deverick J. Anderson, MD, MPH; Keith S. Kaye, MD; David Classen, MD, MS; Kathleen M. Arias, MS, CIC; Kelly Podgorny, RN, MS, CPHQ; Helen Burstin, MD; David P. Calfee, MD, MS; Susan E. Coffin, MD, MPH; Erik R. Dubberke, MD; Victoria Fraser, MD; Dale N. Gerding, MD; Frances A. Griffin, RRT, MPA; Peter Gross, MD; Michael Klompas, MD; Evelyn Lo, MD; Jonas Marschall, MD; Leonard A. Mermel, DO, ScM; Lindsay Nicolle, MD; David A. Pegues, MD; Trish M. Perl, MD; Sanjay Saint, MD; Cassandra D. Salgado, MD, MS; Robert A. Weinstein, MD; Robert Wise, MD; Deborah S. Yokoe, MD, MPH
The Basics

- Perform surveillance for SSIs (A-II)
 - Feedback
 - Enhance with automated data collection
- Peri-operative antimicrobial prophylaxis (A-I)
 - Agent
 - Timing
 - Discontinue within 24 hours
- Do not shave hair (A-II)
The Basics

- Control blood glucose during immediate post-operative period (A-I)
 - Cardiac procedures
- Feedback data on process measures (A-III)
- Implement policies to reduce risk of SSI that are aligned with evidence-based standards (A-II)
Examples: Evidence-Based Standards

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Recommendation</th>
<th>Grade*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrinsic, patient related (preoperative)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unmodifiable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>No formal recommendation: relationship to increased risk of SSI may be secondary to comorbidities or immune senescence [28-30]</td>
<td></td>
</tr>
<tr>
<td>Modifiable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose control, diabetes</td>
<td>Control serum blood glucose levels [5]; reduce glycosylated hemoglobin A1c levels to <7% before surgery, if possible [31]</td>
<td>A-II</td>
</tr>
<tr>
<td>Obesity</td>
<td>Increase dosing of prophylactic antimicrobial agent for morbidly obese patients [32]</td>
<td>A-II</td>
</tr>
<tr>
<td>Smoking cessation</td>
<td>Encourage smoking cessation within 30 days before procedure [5]</td>
<td>A-II</td>
</tr>
<tr>
<td>Immunosuppressive medications</td>
<td>No formal recommendation; in general, avoid immunosuppressive medications in perioperative period, if possible</td>
<td>C-II</td>
</tr>
</tbody>
</table>
Extrinsic, procedure related (perioperative)

Preparation of patient

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hair removal</td>
<td>Do not remove unless hair will interfere with the operation [5]; if hair removal is necessary, remove by clipping and do not use razors</td>
<td>A-I</td>
</tr>
<tr>
<td>Preoperative infections</td>
<td>Identify and treat infections (e.g., urinary tract infection) remote to the surgical site before elective surgery [5]</td>
<td>A-II</td>
</tr>
</tbody>
</table>

Operative characteristics

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical scrub (surgical team members’ hands and forearms)</td>
<td>Use appropriate antiseptic agent to perform 2-5-minute preoperative surgical scrub [5] or use an alcohol-based surgical hand antisepsis product</td>
<td>A-II</td>
</tr>
<tr>
<td>Skin preparation</td>
<td>Wash and clean skin around incision site; use an appropriate antiseptic agent [5]</td>
<td>A-II</td>
</tr>
<tr>
<td>Antimicrobial prophylaxis</td>
<td>Administer only when indicated [5]</td>
<td>A-I</td>
</tr>
<tr>
<td>Timing</td>
<td>Administer within 1 hour before incision to maximize tissue concentration [5, 33]</td>
<td>A-I</td>
</tr>
<tr>
<td>Choice</td>
<td>Select appropriate agents on the basis of surgical procedure, most common pathogens causing SSI for a specific procedure, and published recommendations [5, 33]</td>
<td>A-I</td>
</tr>
<tr>
<td>Duration of therapy</td>
<td>Stop prophylaxis within 24 hours after the procedure for all procedures except cardiac surgery; for cardiac surgery, antimicrobial prophylaxis should be stopped within 48 hours [5, 33]</td>
<td>A-I</td>
</tr>
<tr>
<td>Surgeon skill/technique</td>
<td>Handle tissue carefully and eradicate dead space [5]</td>
<td>A-III</td>
</tr>
<tr>
<td>Asepsis</td>
<td>Adhere to standard principles of operating room asepsis [5]</td>
<td>A-III</td>
</tr>
<tr>
<td>Operative time</td>
<td>No formal recommendation in most recent guidelines; minimize as much as possible [34]</td>
<td>A-III</td>
</tr>
<tr>
<td>Operating room characteristics</td>
<td>Details</td>
<td>Level</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Ventilation</td>
<td>Follow American Institute of Architects’ recommendations [5]</td>
<td>C-I</td>
</tr>
<tr>
<td>Traffic</td>
<td>Minimize operating room traffic [5]</td>
<td>B-II</td>
</tr>
<tr>
<td>Environmental surfaces</td>
<td>Use a US Environmental Protection Agency–approved hospital disinfectant to clean surfaces and equipment [5]</td>
<td>B-III</td>
</tr>
<tr>
<td>Sterilization of surgical equipment</td>
<td>Sterilize all surgical equipment according to published guidelines; minimize the use of flash sterilization [5]</td>
<td>B-I</td>
</tr>
</tbody>
</table>
SSI due to MRSA

Fiction and Frustrations
Strategies for Prevention of MRSA SSI

- **Decolonization**
 - Issues include
 - Method of surveillance
 - Which patients?

- **Change prophylaxis**
 - Issues include
 - Problems with alternative agents
 - Which patients?
Colonization with MRSA - Who Cares?

- Operative patients who are colonized with *S. aureus*/MRSA are 2-9 times more likely to develop SSI

- Infecting organism usually the same as organism colonizing patient in pre-operative period

Wenzel, J Hosp Infect, 1995
Shukla, A, JBJS Br, 2009
Methods for MRSA Screening

- **Time required to detect MRSA in nasal swabs** varies considerably based on methods used. PCR vs. standard culture: faster, but more expensive.

<table>
<thead>
<tr>
<th>Method</th>
<th>Time (hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood agar + Suscep testing</td>
<td>48-96</td>
</tr>
<tr>
<td>Mannitol salt/oxa plate</td>
<td>24-48</td>
</tr>
<tr>
<td>Chromogenic media</td>
<td>28-24</td>
</tr>
<tr>
<td>PCR</td>
<td>≤ 2</td>
</tr>
</tbody>
</table>

- **PCR vs. standard culture:** faster, but more expensive.
Screening Does Nothing (without additional processes)

- Who performs tests?
- Who follows-up on results?
- What is done with results?
- Are test results available in time to act upon?
- What are consequences of process failure?
 - ? Delay surgery
 - ? Change prophylaxis
 - ? Litigation
Different Approaches

- Can empirically decolonize, treat
 - Decolonization for all preoperative patients

- Can “search and destroy” (for *S. aureus* or MRSA)
 - Screen for S. aureus/MRSA and decolonize/treat patients who are screen or culture-positive
Decolonization

- **Mupirocin** temporarily decolonizes many patients of *S. aureus*
 - Colonization often returns, depending on level/number of additional co-morbidities
- "Standard" method: mupirocin applied to nares for 3-5 days prior to surgery
- ? Chlorhexidine gluconate (CHG) on skin
 - Soap
 - Wipes
Can Routine Decolonization Prevent SSI?

- 4 RCTS compared mupirocin to placebo
- All showed essentially the same thing:
 - Rate of *S. aureus* nasal carriage decreased, but not real impact on SSI
- Largest included 4,000 surgical patients
 - No effect on incidence of *S. aureus* SSI (~2.3% in each group)
 - For patients with pre-operative colonization with *S. aureus*, decrease in risk for *S. aureus* SSI (3.7% vs. 5.9%, NS)

Can Decolonization of Patients with *S. aureus* Prevent SSI?

- **Systematic review of 4 RCTs**
- Analyzed patients with *S. aureus* colonization only

<table>
<thead>
<tr>
<th>Study</th>
<th>Mupirocin n/N</th>
<th>Control n/N</th>
<th>RR (random) 95% CI</th>
<th>Weight %</th>
<th>RR (random) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garcia</td>
<td>1/31</td>
<td>3/34</td>
<td>5.26</td>
<td>4.83</td>
<td>0.37 [0.04, 3.33]</td>
</tr>
<tr>
<td>Kalmeijer</td>
<td>2/95</td>
<td>5/86</td>
<td>9.87</td>
<td>1.42</td>
<td>0.36 [0.07, 1.82]</td>
</tr>
<tr>
<td>Perl</td>
<td>16/432</td>
<td>26/439</td>
<td>69.46</td>
<td>2.82</td>
<td>0.63 [0.34, 1.15]</td>
</tr>
<tr>
<td>Konvalinka</td>
<td>5/130</td>
<td>4/127</td>
<td>15.41</td>
<td>1.14</td>
<td>1.22 [0.34, 4.44]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>688</td>
<td>686</td>
<td>100.00</td>
<td></td>
<td>0.64 [0.38, 1.06]</td>
</tr>
</tbody>
</table>

Total events: 24 (treatment), 38 (control)
Test for heterogeneity: $\chi^2 = 1.69$, df = 3 ($P = 0.64$), $I^2 = 0$
Test for overall effect: $Z = 1.73$ ($P = 0.08$)

Can Routine Decolonization Prevent SSI?

- Systematic review and meta-analysis
 - 3 RCTs
 - 4 “before-after” studies
- Correlation depended on type of surgery and type of study
 - No effect in RCTs
 - In observational studies, appeared to be some benefit when used in non-general surgical procedures
 - 5,946 patients in 3 studies: RR=0.40 (0.29-0.56)

Kallen et al. ICHE 2005;26:91&92
Can Decolonization of Patients with *S. aureus* Prevent SSI?

- Some more recent studies have demonstrated that screening for MRSA led to lower rates of MRSA SSI
 - Most before-after, single-center experiences
- **Cardiac surgery (n=1,462)**
 - Decolonization and change prophylaxis
 - MRSA SSI rate fell from 3.30% to 2.22% (RR=0.7, 95% CI 0.06-0.95)
- **SCIP procedures (n=5,094)**
 - Institution of broad screening program for MRSA
 - Screen positive operative patients treated with mupirocin + CHG X 5 days
 - Changes in pre-operative prophylaxis left up to the surgeon

Can Decolonization of Patients with S. aureus Prevent SSI?

Figure 1. Rate of MRSA surgical-site infections before (blue bar) and after (red bar) universal screening. *p = 0.04 before versus after.
Can Decolonization of Patients with *S. aureus* Prevent SSI?

- Prospective, interventional cohort study of 20,000 surgical patients with crossover design comparing standard IC plus rapid screening for MRSA with standard IC methods alone.

- Bottom line: Rates of MRSA infection did not change.

Can Decolonization of Patients with *S. aureus* Prevent SSI?

Decolonization: Other Considerations

- Can’t be done in emergency settings
- Patients can be colonized in multiple, diverse anatomic sites (e.g., peri-rectal, IV sites, axilla)
- Mupirocin resistance is a concern
 - With prolonged use, usually see emergence of mupirocin-resistant strains
- MRSA may be acquired AFTER surgery

MRSA Screening Cultures

- Best method (where to culture?) is unclear
- Presence of skin lesions or chronic wounds is an important risk factor for MRSA colonization at the time of hospital admission
- Community-associated MRSA infections often present as skin and soft tissue infections
 - Rarely isolated from nares cultures

Percent of Patients Positive for MRSA by Body Site

Change Prophylaxis?

- No current guidelines recommend routine use of vancomycin (or other anti-MRSA agent) for peri-operative prophylaxis
- Specific scenarios where appropriate
 - Proven outbreak of SSI due to MRSA
 - Institutions with “high endemic rates” of SSI due to MRSA
 - Targeted high-risk patients who are at increased risk for SSI due to MRSA
- Disadvantages
 - Vancomycin takes >1 hour to infuse
 - Beta-lactams more active against susceptible gram-positive organisms
 - Vancomycin has no activity against gram-negative organisms
 - Wide spread use may lead to increased vancomycin resistance

Bratzler CID 2004.
Dodds CID 2004;38:1555-60.
Prophylaxis with Vancomycin

• Most studies done in cardiac surgery
• Meta-analysis of 7 studies comparing vancomycin to cephalosporin
 - No difference in overall rate of SSI
 - Issue: studies were published before MRSA became such a big problem

Prophylaxis with Vancomycin

Prophylaxis with Vancomycin

- More recent studies continue to provide conflicting results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coagulate-negative Staphylococcus</td>
<td>4.8 ± 2.4</td>
<td>3.8 ± 3.0</td>
</tr>
<tr>
<td>MRSA</td>
<td>0.79 ± 0.93</td>
<td>0.52 ± 0.87</td>
</tr>
<tr>
<td>Other gram-positive organisms</td>
<td>1.8 ± 1.4</td>
<td>1.9 ± 2.0</td>
</tr>
<tr>
<td>Gram-negative organisms</td>
<td>3.2 ± 2.3</td>
<td>3.2 ± 2.6</td>
</tr>
</tbody>
</table>

- None have showed increase in gram-negative infections
 - Our own data shows that there may be a trend

Garey et al. AAC 2008;52:446
Vancomycin + Beta-lactam?

- At Duke, program to decrease rates of mediastinitis due to MRSA
 - Aggressive glucose control
 - Increased compliance with pre-operative antiseptic CHG shower
 - Addition of vancomycin and rifampin to cefuroxime for antibiotic prophylaxis in “high risk patients”

- Before-after design
- Sustained decrease

Engemann et al. IDSA 2005
Rate of SSI and MRSA SSI following CARD or CABG

Engemann et al. IDSA 2005
Take Home Points

- **MRSA** is the leading cause of SSI
 - Leads to adverse outcomes
 - Patients with decreased function appear to be at highest risk
- No well-proven interventions to specifically prevent MRSA exist
 - “UNRESOLVED ISSUES”
- Make sure evidence-based measures are in place for SSI prevention before you target MRSA specifically
Take Home Points

- Targeted efforts to screen, decolonize and/or broaden antibiotic prophylaxis are options
 - But ALL remain controversial
 - NO data to support general application of these methods
 - Have process in place to manage results from screening tests BEFORE you start screening

- Make decisions based on local epidemiology:
 - Know your rates and bugs
 - Is MRSA a problem pathogen for SSI?
 - If not, specific interventions might not be worth it